首页> 外文OA文献 >Sol-Gel Glasses Doped with Pt-Acetylides and Gold Nanoparticles for Enhanced Optical Power Limiting
【2h】

Sol-Gel Glasses Doped with Pt-Acetylides and Gold Nanoparticles for Enhanced Optical Power Limiting

机译:掺有乙炔和金纳米粒子的溶胶凝胶玻璃可增强光功率限制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High power laser pulses can be a threat to sensors, including the human eye. Traditionally this threat has been alleviated by colour filters that blocks radiation in chosen wavelength ranges. Colour filters’ main drawback is that they block radiation regardless of it being useful or damaging, information is removed for wavelengths at which the filter protect. Protecting the entire wavelength range of a sensor would block or strongly attenuate the radiation needed for the operation of the sensor. Sol-gel glasses highly doped with Pt-Acetylide chromophores have previously shown high optical quality in combination with efficient optical power limiting through reverse saturable absorption1. These filters will transmit visible light unless the light fluence is above a certain threshold. A key design consideration of laser protection filters is linear absorption in relation to threshold level. By increasing chromophore concentration the threshold is lowered at the expense of higher linear absorption. This means that the user’s view is degraded through the filter. Adding small amounts of gold nanoparticles to the glasses resulted in an increase in optical power limiting performance. The optimal concentration of gold nanoparticles corresponded to a mean particle distance of several micrometers. The work in this licentiate thesis is about the characterization and explanation of this effect. The glasses investigated in this work were MTEOS Sol-Gel glasses doped with either only gold nanoparticles of varying shape and concentration, 50mM of PE2-CH2OH codoped with gold nanoparticles or 50mM of PE3-CH2OH codoped with gold nanoparticles. The glasses only doped with gold nanoparticles showed high optical power limiting performance at 532nm laser wavelength, but no optical power limiting at the fluences tested at 600nm. The PE2-CH2OH glasses codoped with gold nanoparticles showed an enhancement of optical power limiting at 600nm for the low gold nanoparticle concentration glasses. The enhancement was weakened or not present for higher concentrations. A similar enhancement above noise level for the PE3-CH2OH glasses was not found. A population model is used to give a qualitative explanation of the findings. The improvement in optical power limiting performance for the PE2-CH2OH glasses is explained by the gold nanoparticles helping to more quickly populate the highly absorbing triplet state during the rising edge of the laser pulse by enhancing two-photon absorption. The lack of any marked enhancement for the PE3-CH2OH glasses is explained by the PE3-CH2OH chromophore already being of sufficiently high performance to quickly populate the highly absorbing triplet state during the rising edge of the laser pulse. Further work is necessary to validate this model against other chromophores and improving its quantitative predictive power.
机译:高功率激光脉冲可能会威胁包括人眼在内的传感器。传统上,这种威胁已通过滤色镜来缓解,该滤色镜可阻止选定波长范围内的辐射。彩色滤光片的主要缺点是,无论有用还是有害,它们都会阻挡辐射,因此会滤除滤色片保护波长的信息。保护传感器的整个波长范围将阻止或强烈衰减传感器工作所需的辐射。以前,掺有Pt-乙内酯发色团的溶胶-凝胶玻璃具有很高的光学质量,并且通过反向饱和吸收有效地限制了光功率1。除非光通量高于某个阈值,否则这些滤光器将透射可见光。激光保护滤光片的关键设计考虑因素是相对于阈值水平的线性吸收。通过增加生色团浓度,可以降低阈值,但要以较高的线性吸收为代价。这意味着通过过滤器会降低用户的视图。向玻璃中添加少量金纳米颗粒会导致光功率限制性能的提高。金纳米颗粒的最佳浓度对应于几微米的平均颗粒距离。本被许可论文中的工作是关于这种效应的表征和解释。在这项工作中研究的玻璃是仅掺杂形状和浓度不同的金纳米颗粒,掺有金纳米颗粒的50mM PE2-CH2OH或掺有金纳米颗粒的50mM PE3-CH2OH的MTEOS溶胶-凝胶玻璃。仅掺杂金纳米颗粒的玻璃在532nm激光波长下显示出高光功率限制性能,但在600nm处测试的注量下没有光功率限制。与金纳米颗粒共掺杂的PE2-CH2OH玻璃对于低金纳米颗粒浓度的玻璃在600nm处显示出光功率限制的增强。对于更高的浓度,增强作用减弱或不存在。未发现PE3-CH2OH玻璃在噪音水平上有类似的增强。人口模型用于对发现进行定性解释。 PE2-CH2OH玻璃的光功率限制性能得到改善,这是因为金纳米颗粒通过增强双光子吸收有助于在激光脉冲上升沿期间更快地填充高吸收三重态。 PE3-CH2OH玻璃缺乏任何明显的增强,是因为PE3-CH2OH生色团已经具有足够的性能,可以在激光脉冲的上升沿快速填充高吸收三重态。需要进一步的工作来验证该模型与其他生色团的关系,并提高其定量预测能力。

著录项

  • 作者

    Lundén, Hampus;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 入库时间 2022-08-20 20:22:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号